Twitter as science communication tool in Spain. Main agents and communication networks
Downloads
Abstract
The study of the main agents, communication networks and information flows on Twitter is an emerging research topic. It has been applied in areas such as political communication, sports or tourism, but not in science communication. The present work is focused on detecting and measuring the main agents and communication networks about science on Twitter through the Network Theory. The 109 personal and institutional users who are acting as science influencers in Spain are identified. This network presents itself as a stable and compact community. The most productive profiles are the personal ones, which indicates that the activity on Twitter depends more on an interest and an individual commitment than on having a communication team. A use of Twitter is detected, not so much focused on the diffusion of contents and opinions on science, but rather on the promotion of products and events of dissemination. A restricted analysis of the hashtags has made possible to verify the strong link between the tweets and the national and international science news. It also shows the special interest that Atapuerca arouses in the conversations about science on Twitter in Spain.Keywords
Science communication, Twitter, social networks, network theory, Flow Analysis, hashtagsDownloads
References
• Akhtar, N., & Ahamad, M. V. (2017). Graph Tools for Social Network Analysis. Graph Theoretic
Approaches for Analyzing Large-Scale Social Networks, 18.
• Alonso Berrocal, J. L., Gómez Díaz, R., Figuerola, C. G., Zazo Rodríguez, Á. F., y Cordón García, J. A. (2012). “Propuesta de estudio del campo semántico de los libros electrónicos
en Twitter”. Scire, 18(2), 87-97.
• Antenucci, D., Handy, G., Modi, A., y Tinkerhess, M. (2011). “Classification of tweets via
clustering of hashtags”. EECS, 545, 1-11.
• Ausserhofer, J., y Maireder, A. (2013). “National politics on Twitter: Structures and topics of
a networked public sphere”. Information, Communication & Society, 16(3), 291-314.
• Barbagallo, D., Bruni, L., Francalanci, C., y Giacomazzi, P. (2012). “An Empirical Study on the
Relationship between Twitter Sentiment and Influence in the Tourism Domain”. En: Information
and Communication Technologies in Tourism 2012 (pp. 506-516). Springer, Vienna.
Boyd, D., Golder, S., y Lotan, G. (2010). “Tweet, tweet, retweet: Conversational aspects
of retweeting on twitter”. En: System Sciences (HICSS), 2010 43rd Hawaii International
Conference.
• Bonetta, L. (2009). “Should you be tweeting?”. Cell, 139(3), 452-453
• Brown Jarreau, P. (2014). An explosion of alternatives. EMBO reports, e201439130.
• Brown, D., y Hayes, N. (2008). Influencer marketing. Who really influences your customers?
Routledge.
• Burt, R. S. (1999). “The social capital of opinion leaders”. The Annals of the American Academy
of Political and Social Science, 566(1), 37-54.
• Castillo, C., Mendoza, M., y Poblete, B. (2011). “Information credibility on twitter”. En: Proceedings
of the 20th international conference on World wide web (pp. 675-684). ACM.
• Cha, M., Benevenuto, F., Haddadi, H., y Gummadi, K. (2012). “The world of connections and
information flow in twitter”. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 42(4), 991-998.
• Chamberlin, L., y Lehmann, K. (2011). “Twitter in higher education”. Cutting-edge Technologies
in Higher Education, 1, 375-391.
• Chen, S.-C., Yen, D. C., y Hwang, M. I. (2012). “Factors influencing the continuance intention
to the usage of Web 2.0: An empirical study”. Computers in Human Behavior, 28(3),
933-941.
• De Semir, V. (2010). “El «mutatis mutandis» de la comunicación científica en la era de Internet”.
ArtefaCToS, 3(1), 49-79. Disponible en:
• Dehkharghani, R., Mercan, H., Javeed, A., & Saygin, Y. (2014). Sentimental causal rule discovery
from Twitter. Expert Systems with Applications, 41(10), 4950-4958.
• Dehmer, M., Emmert-Streib, F., y Pickl, S. (2015). Computational Network Theory: Theoretical
Foundations and Applications (Vol. 5). John Wiley & Sons.
• Del Fresno Garcia, M., Daly, A. J., y Segado Sanchez-Cabezudo, S. (2016). “Identifying the
new Influences in the Internet Era: Social Media and Social Network Analysis”. Revista
Española de Investigaciones Sociológicas, 153: 23-40.
• Dubois, E., y Gaffney, D. (2014). “The multiple facets of influence: identifying political influentials
and opinion leaders on Twitter.” American Behavioral Scientist, 58(10), 1260-1277.
• Fernández de Lis, P. (2013). “Ciencia y periodismo en la red”. Quaderns de la Fundació Dr.
Antoni Esteve, 28, 15-19.
• Garcia Esparza, S., O’Mahony, M. P., y Smyth, B. (2012). “Mining the real-time web: a novel
approach to product recommendation”. Knowledge-Based Systems, 29, 3-11.
• Gerber, A. (2014). “Science Caught Flat-Footed: How Academia Struggles with Open
Science Communication”. En: Bartling, S., y Friesike, S. Opening Science. Springer International
Publishing. Págs 73-80.
• Java, A., Song, X., Finin, T., y Tseng, B. (2007). “Why we twitter: understanding microblogging
usage and communities”. En: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
workshop on Web mining and social network analysis (pp. 56-65). ACM.
• Kahle, K., Sharon, A. J., y Baram-Tsabari, A. (2016). “Footprints of Fascination: Digital Traces
of Public Engagement with Particle Physics on CERN’s Social Media Platforms”. PloS
one, 11(5), e0156409
• Kelly, R. (2009). “Twitter study reveals interesting results about usage”. PearAnalytics. August
12th.
• King, C. W., y Summers, J. O. (1970). “Overlap of opinion leadership across consumer product
categories”. Journal of Marketing Research, 43-50.
• Kiss, C., y Bichler, M. (2008). “Identification of influencers—measuring influence in customer
networks”. Decision Support Systems, 46(1), 233-253.
• Kwak, H., Lee, C., Park, H., y Moon, S. (2010). “What is Twitter, a social network or a news
media?”. En: Proceedings of the 19th international conference on World wide web (pp. 591-
600). ACM.
• Lanthaler, M., y Gütl, C. (2012). “On using JSON-LD to create evolvable RESTful services”.
En: Proceedings of the Third International Workshop on RESTful Design (pp. 25-32). ACM.
• Lee, K., Palsetia, D., Narayanan, R., Patwary, M. M. A., Agrawal, A., y Choudhary, A. (2011).
“Twitter trending topic classification”. Paper presented at the Data Mining Workshops
(ICDMW), IEEE 11th International Conference.
• Liang, X., Su, L. Y. F., Yeo, S. K., Scheufele, D. A., Brossard, D., Xenos, M., ... y Corley, E. A.
(2014). “Building Buzz (Scientists) Communicating Science in New Media Environments”.
Journalism & Mass Communication Quarterly.
• Li, N., Akin, H., Su, L. Y. F., Brossard, D., Xenos, M., y Scheufele, D. A. (2016). “Tweeting disaster:
an analysis of online discourse about nuclear power in the wake of the Fukushima
Daiichi nuclear accident. JCOM, 15(05), A02-2.
• Lozano, E., y Vaca, C. (2017). “Crisis management on Twitter: Detecting emerging leaders”.
En: eDemocracy & eGovernment (ICEDEG), 2017 Fourth International Conference on (pp.
140-147). IEEE.
• Mandavilli, A. (2011). “Trial by twitter”. Nature, 469 (7330), 20.
• Montenegro, V., y Escudero, H. (2013). “Las redes sociales y la difusión de la tecnología y la
innovación”. En: III Congreso Internacional de Comunicación Pública de la Ciencia, Santa
Fe, Argentina.
• Narr, S., De Luca, E. W., y Albayrak, S. (2011). “Extracting semantic annotations from twitter”.
En: Proceedings of the fourth workshop on Exploiting semantic annotations in information
retrieval.
• Nentwich, M., y König, R. (2014). “Academia Goes Facebook? The Potential of Social Network
Sites in the Scholarly Realm”. En: Bartling, S., y Friesike, S. Opening Science. 107-124.
Springer International Publishing.
• Ogan, C., y Varol, O. (2017). “What is gained and what is left to be done when content
analysis is added to network analysis in the study of a social movement: Twitter use during
Gezi Park”. Information, Communication & Society, 20(8), 1220-1238.
• Pearce, W., Holmberg, K., Hellsten, I., y Nerlich, B. (2014). “Climate change on Twitter: Topics,
communities and conversations about the 2013 IPCC Working Group 1 report”. PloS
one, 9(4), e94785.
• Peters, H. P., Dunwoody, S., Allgaier, J., Lo, Y. Y., y Brossard, D. (2014). “Public communication of science 2.0”. EMBO reports, 15(7), 749-753.
• Pont Sorribes, C., Cortiñas Rovira, S., y Di Bonito, I. (2013). “Challenges and opportunities
for science journalists in adopting new technologies: the case of Spain”. JCOM, 12 (03).
• Quiñónez Gómez, H., y Sánchez Colmenares, M. (2016). “Uso de Twitter en el periodismo
científico. Los casos de los diarios El Nacional y El Universal en Venezuela”. Questión, 1.
• Razis, G., y Anagnostopoulos, I. “InfluenceTracker: Rating the Impact of a Twitter Account”.
(2016). En: Iliadis, L., Maglogiannis, I., Papadopoulos, H., Sioutas, S., y Makris, C. Artificial
Intelligence Applications and Innovations. Springer International Pu.
• Ribas, C. (2012). “La divulgación y la comunicación de la ciencia, en la encrucijada”. SEBBM,
173, 10-12.
• Rogers, R. (2013, May). “Debanalizing Twitter: The transformation of an object of study”. En:
Proceedings of the 5th Annual ACM Web Science Conference, 356-365. ACM.
• Runge, K. K., Yeo, S. K., Cacciatore, M., Scheufele, D. A., Brossard, D., Xenos, M., y Su, L. Y.
F. (2013). “Tweeting nano: How public discourses about nanotechnology develop in social
media environments”. Journal of nanoparticle research, 15(1), 1-11.
• Simmie, D., Vigliotti, M. G., y Hankin, C. (2014). “Ranking twitter influence by combining network
centrality and influence observables in an evolutionary model”. Journal of Complex
Networks, 2(4), 495-517.
• Sriparasa, S. S. (2013). JavaScript and JSON essentials. Packt Publishing Ltd.
• Veletsianos, G. (2012). “Higher education scholars’ participation and practices on Twitter”.
Journal of Computer Assisted Learning, 28(4), 336-349.
• Veltri, G. A. (2013). Microblogging and nanotweets: Nanotechnology on Twitter. Public Understanding
of Science, 22(7), 832-849.
• Westerman, D., Spence, P. R., y Van Der Heide, B. (2012). “A social network as information:
The effect of system generated reports of connectedness on credibility on Twitter”. Computers
in Human Behavior, 28(1), 199-206.
• Willis, A., Fisher, A., y Lvov, I. (2015). “Mapping networks of influence: tracking Twitter conversations
through time and space”. Participations: Journal of Audience & Reception Studies,
12(1), 494-530.
• Yerva, S. R., Miklós, Z., y Aberer, K. (2012). “Quality-aware similarity assessment for entity
matching in Web data”. Information Systems, 37(4), 336-351.
• Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E. P., Yan, H., y Li, X. (2011). “Comparing twitter
and traditional media using topic models”. En: European Conference on Information Retrieval
(pp. 338-349). Springer, Berlin, Heidelberg.